December 2024

Phage Display Antibody Discovery

2024-12-20T14:38:21-05:00December 19th, 2024|Articles|

Written by: Jenna Kerry, MSc Published: December 20, 2024 Contents What is Phage Display? How Does Phage Display Work? Phage Display Technology Advantages Phage Display Technology Limitations The Future of Phage Display Technology Overcoming Limitations of Phage Display Antibody Discovery What is Phage Display? Over [...]

November 2024

Antibody Humanization Strategies, Challenges, and Innovations

2024-12-11T10:12:25-05:00November 6th, 2024|Articles|

Written by: Jenna Kerry, MSc Published: November 6, 2024 Contents Why Humanize Antibodies? What is Antibody Humanization? Antibody Humanization Techniques Current Challenges of Antibody Humanization The Future of Human Antibody Therapeutics Fully Human Antibody Discovery / Human Antibody Discovery From Human Serum Why Humanize Antibodies? [...]

September 2024

Agonist Antibody Challenges and Optimization

2024-10-01T17:08:33-04:00September 18th, 2024|Articles|

Written by: Jenna Kerry, MSc Published: September 17, 2024 Contents Introduction Agonistic Antibody Mechanism of Action Agonistic Antibody Development Challenges Optimizing Agonistic Antibodies Agonistic Antibody Development Introduction In the last decade, immunotherapy has rapidly transformed treatments for cancer, autoimmune disorders, and infectious diseases. While the [...]

August 2024

Antagonistic Antibodies: Opportunities and Obstacles

2024-12-02T13:27:16-05:00August 14th, 2024|Articles|

Written by: Jenna Kerry, MSc Published: August 14, 2024 Contents What are Antagonistic Antibodies? How do Antagonistic Antibodies Work? Antagonistic Antibody Opportunities Antagonistic Antibody Obstacles Antibody Discovery Platform for Antagonistic Antibodies What are Antagonistic Antibodies? Antagonistic antibodies are a monoclonal antibody that bind to and [...]

May 2024

April 2024

The Landscape of Bispecific and Multispecific Antibodies

2024-12-02T13:58:26-05:00April 19th, 2024|Articles|

Written by: Genya Gorshtein, MSc Published: April 19, 2024 Contents Introduction Bispecifics and Multispecific Antibody Formats Mechanism of Action of Bispecific Antibodies Bispecific and Multispecific Development with Rapid Novor Introduction The complex nature of diseases often limits the therapeutic efficacy of monovalent antibodies. To [...]

March 2024

January 2024

August 2023

Latest Advancements in Antibody Engineering – Bispecifics, Diagnostic Controls, and More

2024-04-24T10:35:04-04:00August 29th, 2023|Webinars|

In this webinar, you will learn: Antibody technologies for the design of unique antibody formats Advancements in engineering efforts for the development of functionally tailored antibodies, recombinant isotype antibody panels, and multivalent fragment antibody constructs Characterization of different bispecific antibody formats Next generation protein sequencing to aid in bispecific antibody design [...]

July 2023

Antibody Discovery Dead Ends and New Approaches

2024-12-03T12:39:28-05:00July 20th, 2023|Webinars|

In this webinar, you will learn: About the challenges commonly encountered in antibody discovery campaigns, including non-functional antibodies, limited diversity, developability issues, and immunogenicity. How to de-risk antibody discovery campaigns, while balancing speed and spend Discover how a proteomics and mass spectrometry-based approach to antibody discovery, utilizing REpAb polyclonal sequencing, presents [...]

June 2023

CAR-iNKT Cells Targeting Clonal TCRVβ Chains as a Precise Strategy to Treat T Cell Lymphoma

2024-06-10T12:48:41-04:00June 16th, 2023|Case Studies|

With 22 functional T cell receptor (TCR)Vβ subunit families making up the normal T cell repertoire, signals from these cell surface receptors often determine the fate of normal cells. However, mutations in TCR signaling proteins are frequently associated with peripheral T cell lymphomas (TCLs), including adult T cell leukemia/lymphoma (ATL), which indicates a driving role for TCRs in TCL oncogenesis. As TCL and ATL are clonal in nature, tumour cells typically express a single TCRVβ subunit with no bias in the usage of TCRVβ subunit families. Consequently, targeting the specific TCRVβ subunit presents a promising therapeutic approach that is highly selective and tumour-specific.

May 2023

Rational Antibody Design and Engineering with Next Generation Protein Sequencing

2024-04-29T13:20:11-04:00May 9th, 2023|Webinars|

In this webinar, you will learn: A strategy for generating recombinant mAbs and antibody derivatives directed towards antigens involved in mitotic cell division Methods for antibody engineering and customization, species switching, and construction of antibody fragments How Next Generation Protein Sequencing (NGPS) works Applications of NGPS to aid engineering and recombinant production of [...]

February 2023

Towards Antigen-Specific Tregs for Type 1 Diabetes: Construction and Functional Assessment of Pancreatic Endocrine Marker, HPi2-Based Chimeric Antigen Receptor

2024-04-24T10:42:26-04:00February 3rd, 2023|Case Studies|

Antibodies with established, specific targets can be sequenced and utilized to engineer the hinge region and antigen-binding domains with antibody fragments and derivatives. With the sequence information in hand, further steps to optimizing a viable therapeutic approach can be more accessible.

December 2022

The Hunt for Novel Therapeutics Through Antibody Engineering

2023-06-21T10:25:09-04:00December 2nd, 2022|Articles|

Written by: Genya Gorshtein, MSc Published: November 1, 2022 Contents Introduction Approaches for Engineering Antibody Therapeutics Driving Antibody Engineering with Next Generation Protein Sequencing and Proteomics Introduction Antibody engineering encompasses various development, production strategies, and modification techniques to improve the biological properties of monoclonal antibodies (mAbs) [...]

Cell Specific Protein Degradation with Antibody Conjugated PROTACs

2023-05-25T10:29:24-04:00December 2nd, 2022|Articles|

Written by: Genya Gorshtein, MSc Published: November 25, 2022 Contents Introduction General PROTAC Structure and Function Antibody-Conjugated PROTACs Developing AbPROTACs with De Novo Antibody Sequencing and Proteomics Introduction Small-molecule drug development is aimed at inhibiting disease-promoting protein function through occupancy-driven protein inhibition. A major caveat of [...]

October 2022

Resistance to Autosomal Dominant Alzheimer’s Disease in an APOE3 Christchurch Homozygote

2024-04-24T10:43:19-04:00October 21st, 2022|Case Studies|

De novo protein sequencing provided the research team with insurance by securing the complete amino acid sequence of a therapeutic mAb candidate for ADAD. This mass spectrometry-based protein sequencing technique can be used to obtain the sequence information of any antibody or protein for biomarker discovery, characterization, and validation. Access to this structural information only broadens our understanding of disease pathogenesis and fosters the development of innovative therapeutic or preventative treatments.

September 2022

Antibody-Drug Conjugates as Anti-Cancer Therapeutics

2024-01-22T13:13:13-05:00September 19th, 2022|Articles|

Written by: Genya Gorshtein, MSc Published: September 14, 2022 Contents Introduction ADCs as Novel Anti-Cancer Chemotherapeutics Key Components of ADCs Future Generation of ADCs De Novo Protein Sequencing Applications in ADC Development Introduction An antibody-drug conjugate (ADC) is a monoclonal antibody (mAb) with a covalently attached [...]

August 2022

What are Polyclonal Antibodies?

2023-05-25T10:36:53-04:00August 18th, 2022|Articles|

Written by: Genya Gorshtein, MSc Published: August 18, 2022 Contents Introduction How are Polyclonal Antibodies Produced? Applications of Polyclonal Antibodies Challenges of Polyclonal Antibodies De Novo Polyclonal Antibody Sequencing Introduction Polyclonal antibodies (pAbs) are a heterogeneous mix of antibodies derived from B cells in the [...]

July 2022

Next Generation Vaccine Development with Proteomics

2024-04-24T10:43:40-04:00July 5th, 2022|Webinars|

As nearly all individuals have pre-existing immunity to influenza viruses, influenza-specific memory B cells will likely be recalled upon COBRA HA vaccination. By comparing the antibody response towards specific wild-type influenza strains and COBRA antigens, we can begin to understand the potential for COBRA-based vaccines to be used in the clinic.

June 2022

Characterization and Modulation of Anti-αβTCR Antibodies and Their Respective Binding Sites at the βTCR Chain to Enrich Engineered T Cells

2024-04-24T10:43:50-04:00June 17th, 2022|Case Studies|

αβTCR-engineered T cells have been applied in clinical trials, specifically directed against cancer/testis antigens. Though the clinical outcomes are promising, only a small proportion of patients benefit from these novel treatments. Lower response rates are partially attributed to a heterogeneous mixture of non-engineered and poorly engineered T cells that remain in the administered therapeutic product. For successful translation of these novel treatments into the clinic, engineering efforts should be reinforced with effective methods for engineered T cell purification and engineered T cell elimination post infusion into patients.

May 2022

Enriching Engineered T Cells with Antibody Sequencing & Modulation

2024-04-24T10:56:54-04:00May 10th, 2022|Webinars|

Known, high-performing and well used antibodies against useful targets on CAR-T cells can be examined for mechanism of action using proteomics and mass spectrometry. Knowledge of the antibody sequences via Next Generation Protein Sequencing (NGPS) can be useful for humanizing or otherwise engineering constructs. Rapid Epitope mapping by HDX can be useful for both epitope and paratope engineering strategies.

April 2022

Broadly Neutralizing Antibody Cocktails Targeting Nipah Virus and Hendra Virus Fusion Glycoproteins

2024-04-24T10:43:58-04:00April 29th, 2022|Case Studies|

Hendra virus (HeV) and Nipah virus (NiV) are types of Henipaviruses (HNVs) that originated in bats and can infect the human respiratory system with detrimental consequences. As enveloped, single-stranded RNA viruses, HeV and NiV use attachment (G) and fusion (F) glycoproteins on the envelope membrane to enter host cells. So far, there are no approved therapeutics or vaccines to combat the viruses in humans.

Generation and Diversification of Recombinant Monoclonal Antibodies

2024-04-29T13:20:43-04:00April 22nd, 2022|Case Studies|

Monoclonal antibodies are essential reagents and research tools. They are commonly generated and produced in hybridoma cells and are expected to be highly consistent. However, the instability and fragility of hybridoma cells can cause unwanted mutations, additional chains, and permanent loss of important antibodies. On the other hand, the lack of standardization validation for commercial antibodies often keeps researchers in the dark leading to the reproducibility crisis. 

March 2022

February 2022

Camelid Antibodies and Nanobodies

2024-12-03T10:58:32-05:00February 4th, 2022|Articles|

Written by: Yuning Wang, PhD Updated: January 18, 2023 (Published: January 21, 2022) Contents Discovery of Camelid Antibodies What are Camelid Antibodies? Structure of Camelid Antibodies and Nanobodies Advantages of Camelid Antibodies and Nanobodies Camelid Antibodies and Nanobodies for Therapeutic and Research Applications How are Camelid Antibodies [...]

January 2022

Recombinant Therapeutic pAbs are Now Possible

2024-04-24T10:58:06-04:00January 20th, 2022|Webinars|

Polyclonal antibodies are popular research reagents for their high sensitivity and robust cross-platform performance. But few companies consider them viable for therapeutic applications as they are almost impossible to characterize. Additionally, they suffer from a lack of reproducibility and limited supply. Monoclonal antibodies (mAbs) can be reliably characterized and produced for therapeutic applications, but are more costly to discover and develop. Rapid Novor’s REpAb technology can overcome these limitations by capturing the sequences of the most abundant IgG in a pAb and enabling indefinite antibody production. Here we report the first successful conversion of a goat polyclonal antibody into a cocktail of recombinant mAbs using only the pAb protein sample.

Recombinant Antibodies: A New Generation Enabled by Protein Sequencing

2024-12-03T11:01:29-05:00January 19th, 2022|Articles|

Recombinant antibodies are artificially synthesized antibodies. Recombinant antibodies are generated from expression systems (e.g., E.coli, yeast, mammalian cell lines) via transfection with two separate plasmids encoding the amino acid sequences for the light and heavy chains, respectively. In order to recombinantly produce mAbs, the amino acid sequence of the light and heavy chains must be known. There are many ways to obtain the sequence of an antibody.

December 2021

Polyclonal Antibody Sequencing in Therapeutics Development Pipelines

2024-04-25T10:13:31-04:00December 20th, 2021|Webinars|

Over the past several years Rapid Novor has been developing the world's best antibody protein sequencing platform, with over 2700 monoclonal antibodies and proteins sequenced. In 2020, they unveiled their most advanced technology to date- REpAb® polyclonal antibody sequencing. The platform combines the world's best protein sequencing technology and NGS to comprehensively mine the antigen specific antibody repertoire present in rabbit and human patient samples. By leveraging the platform, teams can build robust antibody assays and therapeutic leads derived from patient's blood.

Next Generation Protein Sequencing in Veterinary Medicine and Industry

2024-04-24T10:44:32-04:00December 3rd, 2021|Whitepapers|

Since 2006, the One Health Initiative (OHI)’s goal has been to demonstrate the inextricable link between humans, animals, and the environment. Certainly, the current global pandemic is a great testament to the ties between climate change, humans, and animals that OHI has been working to highlight. The rise of other zoonotic diseases (e.g., Hendra, and Nipah viruses) not only directly affect humans through disease transmission but may also result in deep impacts to the food supply

October 2021

Ushering the New Era in Anti-Drug Antibody Assays with Next Generation Protein Sequencing

2024-04-24T10:45:13-04:00October 15th, 2021|Whitepapers|

Anti-drug antibody (ADA) assays are critical to assess the clinical efficacy and safety of a biological drug and rely on control reagents that mimic the ADA response to the biological drug being tested. These positive controls typically consist of animal-derived pooled polyclonal antibodies or human monoclonal antibody reference panels against the target protein drug.

September 2021

Monoclonal vs Polyclonal Antibody Drugs

2024-12-03T11:21:15-05:00September 8th, 2021|Articles|

The transition from polyclonal antibody drugs to a more targeted monoclonal approach was made possible through a series of scientific and technological advancements; the most notable of which is the hybridoma technique developed by Köhler and Milstein, which allowed the generation of pure antibodies at scale.

July 2021

June 2021

Bispecific Therapeutics Explained

2024-12-03T11:54:39-05:00June 28th, 2021|Articles|

Bispecific therapeutics are monoclonal antibodies that carry a specific antigen-binding capability on each arm. Bispecifics are thus capable of having two specificities that can either double the binding affinity of the antibody toward the same antigen (increased avidity), or can now bind to two targets. Bispecifics are most often described as two types: trispecifics and bispecific T-cell engaged antibodies (BiTE).

March 2021

The Underlying Cause of Medical Diagnostic Invalidation

2024-04-24T10:53:24-04:00March 23rd, 2021|Whitepapers|

In-vitro diagnostics (IVDs) are one of the most commonly used tools to diagnose conditions and guide treatment decisions and are often considered the “silent champion” of healthcare. They work by detecting the absence or presence of particular markers or by measuring the concentration of analytes or specific substances.

June 2016

Moving Towards Recombinant Monoclonal Antibodies

2023-05-15T11:59:37-04:00June 30th, 2016|Articles|

Recombinant Monoclonal Antibodies (rAbs) are highly reproducible, customizable and pure alternatives to the traditional antibodies produced by hybridomas. Get the antibody protein sequence, either by DNA sequencing or the de novo protein sequencing technology, you can rest assured that you can have the exact antibody made recombinantly anytime in the future.